A new class of photocatalytic materials and a novel principle for efficient water splitting under infrared and visible light: MgB2 as unexpected example

نویسندگان

  • V. G. Kravets
  • A. N. Grigorenko
چکیده

Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts – ionic or covalent binary metals with layered graphite-like structures – effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias=0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals. OCIS codes: (040.5350) Photovoltaic; (160.4760) Optical properties; (230.0250) Optoelectronics; ( 350.4600) Optical engineering. References and links 1. L.R. Bolton, S.J. Strickler, J.S. Connolly, “ Limiting and Realizable Efficiencies of Solar Photolysis of Water,” Nature 316, 495-500 (1985). 2. A. Fujishima, K. Honda, “Electrochemical Photolysis of water at a Semiconductor Electrode,” Nature 238, 3738 (1972). 3. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, “Semiconductor-Based Photocatalytic Hydrogen Generation,” Chem. Rev. 110, 6503-6570 (2010). 4. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution,” Nature Materials 12, 850-855 (2013). 5. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Corkendorff, “ Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts,” Science 317, 100-102 (2007). 6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxide,” Science 293, 269-271 (2001). 7. R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A.Yu. Kuznetsov, D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15, 15528-15537 (2013). 8. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, “Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells,” Chem. Rev. 110, 6664-6688 (2010). 9. Q. Lin, A. Armin, R.C. Raju Nagiri, P.L. Burn, P. Meredith, “Electro-optics of perovskite solar cells,” Nature Photonics 9, 106-112 (2015). 10. J. Luo, J.-H. Im, M.T. Mayer, M. Schreirer, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Gratzel, “Water photolysis at 12.3 % efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345, 1593-1596 (2014). 11. K.T. Fountaine, H.A. Atwater, “Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si/WO3 microwires,” Optics Express 22, A1453-A1461 (2014). 12. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, “ A Metalfree polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nature Materials 8, 76-80 (2008). 13. G. Liu, P. Niu, L. Yin, H.-M. Cheng, “-Sulfur Crystals as a Visible-LightActive Photocatalyst,” J. Am. Chem. Soc. 134, 9070-9073 (2012). 14. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38, 253– 278 (2009). 15. A.J. Leenheer and H.A. Atwater, “Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles,” J. Electrochemical Society 157, B1290-B1294 (2010) 16. J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, “Superconducting Gap in MgB2: Electronic Raman Scattering Measurements of Single Crystals,” Phys. Rev. Lett. 88, 087001 (2002). 17. K.A. Yates, G. Burnell, N.A. Stelmashenko, D.-J. Kang, H.N. Lee, B. Oh, M.G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68, 220512 (2003). 18. W.X. Li, Y. Li, R.H. Chen, R. Zeng, S.X. Dou, M.Y. Zhu, H.M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77, 094517 (2008). 19. V. Guritanu, A.B. Kuzmenko, D.V.D. Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2 ,” Phys. Rev. B 73, 104509 (2006). 20. A. Balassis, E.V. Chulkov, P.M. Echenique, V.M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78, 224502 (2008). 21. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410, 63−64 (2001). 22. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, “Superconductivity of metallic boron in MgB2,” Phys. Rev. Lett. 86, 4656−4659 (2001). 23. J.M. An, W.E. Pickett, “Superconductivity of MgB2, covalent bonds driven metallic,” Phys. Rev. Lett. 86, 4366−4369 (2001). 24. W. Ku, W. Pickett, R. Scalettar, and A. Eguiluz, “Ab Initio Investigation of Collective Charge Excitations in MgB2,” Phys. Rev. Lett. 88, 057001 (2002). 25. X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, H. Petek, “Transient excitons at metal surfaces,” Nature Physics 10, 505–509 (2014). 26. Z. Li, J. Yang, J.G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65, 100507 (R) (2002). 27. G. Profeta, and A. Continenza, “Electronic and dynamical properties of the MgB2 surface: Implications for the superconducting properties,” Phys. Rev. B 66, 184517 (2002). 28. H. Uchiyama, K.M. Shen, S. Lee, A. Damascelli, D.H. Lu, D.L. Feng, Z.-X. Shen, S. Tajima, “Electronic Structure of MgB2 from Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett. 88 (15), 157002 (2002). 29. M. Gratzel, “ Photoelectrochemical cells,” Nature 338, 414-417 (2001). 30. V.M. Silkin, A. Balassis, P.M. Echenique, and E.V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80, 054521 (2009). 31. T. Back, J. Nowotny, M. Rekas, C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J Hydrogen Energy 27, 991-1022 (2002). 32. H. Kato, K. Asakura, and A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125 (10), 3082–3089 (2003). 33. V.G. Kravets, F. Schedin, and A.N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78, 205405 (2008). 34. V.G. Kravets, S. Neubeck, A.N. Grigorenko, A.F. Kravets. “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81, 165401 (2010). 35. H.A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices, “ Nature Materials 9, 205–213 (2010). 36. X. Li, Z. Li, J. Yang, “Proposed Photosynthesis Method for Producing Hydrogen from Dissociated Water Molecules Using Incident Near-Infrared Light,” Phys. Rev. Lett. 112, 018301 (2014). ______________________________________________________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light

This study investigated the photocatalytic behaviors for the nanocomposite of TiO2 P25 and Semnan natural zeolite in the decomposition of tetracycline under visible light in an aqueous solution. The structural features of the composite were investigated by a series of complementary techniques that included X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec...

متن کامل

Synthesis, Characterization, and Application of Zr,Ce-TiO2/SiO2 Nanocomposite Thin Film as Visible-light Active Photocatalyst

A novel Zr,Ce-TiO2/SiO2 nanocomposite thin film was successfully prepared with various amounts of Zr4+ and Ce4+ as codopant ions for self-cleaning applications. A thin film was coated on a tile substrate by dip-coating and porous Zr,Ce-TiO2/SiO2 was obtained after heat treatment for 2 hours at 500 °C. The SEM images an...

متن کامل

Visible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources

In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015